کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4649029 1342440 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p8p
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The isomorphism problem for Cayley ternary relational structures for some abelian groups of order 8p8p
چکیده انگلیسی

A ternary relational structure XX is an ordered pair (V,E)(V,E) where VV is a set and EE a set of ordered 3-tuples whose coordinates are chosen from VV (so a ternary relational structure is a natural generalization of a 3-uniform hypergraph). A ternary relational structure is called a Cayley ternary relational structure of a group GG if Aut(X), the automorphism group of XX, contains the left regular representation of GG. We prove that two Cayley ternary relational structures of Z23×Zp, p≥11p≥11 a prime, are isomorphic if and only if they are isomorphic by a group automorphism of Z23×Zp. This result then implies that any two Cayley digraphs of Z23×Zp are isomorphic if and only if they are isomorphic by a group automorphism of Z23×Zp, p≥11p≥11 a prime.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 310, Issue 21, 6 November 2010, Pages 2895–2909
نویسندگان
,