کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4649526 1342459 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distance two labelling and direct products of graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Distance two labelling and direct products of graphs
چکیده انگلیسی

An L(2,1)L(2,1)-labelling of a graph G is an assignment of nonnegative integers to the vertices of G   such that vertices at distance two get different numbers and adjacent vertices get numbers which are at least two apart. The L(2,1)L(2,1)-labelling number of a graph G  , λ(G)λ(G), is the minimum range of labels over all L(2,1)L(2,1)-labellings of G. Given two graphs G and H, the direct product of G and H   is the graph G×HG×H with vertex set V(G)×V(H)V(G)×V(H) in which two vertices (x,y)(x,y) and (x′,y′)(x′,y′) are adjacent if and only if xx′∈E(G)xx′∈E(G) and yy′∈E(H)yy′∈E(H). In this paper, we completely determine the L(2,1)L(2,1)-labelling numbers of Km×KnKm×Kn for m,n⩾2m,n⩾2, and Km×PnKm×Pn for m⩾3m⩾3, n⩾1n⩾1, where PnPn is the path of length n  . The L(2,1)L(2,1)-labelling numbers of Km×CnKm×Cn for m⩾3m⩾3 and some special values of n   are also determined, where CnCn is the cycle of length n.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 308, Issue 17, 6 September 2008, Pages 3805–3815
نویسندگان
, ,