کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4649648 1342462 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The maximum Randić index of chemical trees with kk pendants
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The maximum Randić index of chemical trees with kk pendants
چکیده انگلیسی

A tree is a chemical tree if its maximum degree is at most 4. Hansen and Mélot [P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs 6: analyzing bounds for the connectivity index, J. Chem. Inf. Comput. Sci. 43 (2003) 1–14], Li and Shi [X. Li, Y.T. Shi, Corrections of proofs for Hansen and Mélot’s two theorems, Discrete Appl. Math., 155 (2007) 2365–2370] investigated extremal Randić indices of the chemical trees of order nn with kk pendants. In their papers, they obtained that an upper bound for Randić index is n2+(32+6−7)k6. This upper bound is sharp for n≥3k−2n≥3k−2 but not for n<3k−2n<3k−2. In this paper, we find the maximum Randić index for n<3k−2n<3k−2. Examples of chemical trees corresponding to the maximum Randić indices are also constructed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 309, Issue 13, 6 July 2009, Pages 4409–4416
نویسندگان
, ,