کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4649865 | 1342468 | 2009 | 9 صفحه PDF | دانلود رایگان |

We define a new combinatorial statistic, maximal-inversion, on a permutation. We remark that the number M(n,k)M(n,k) of permutations in SnSn with kk maximal-inversions is the signless Stirling number c(n,n−k)c(n,n−k) of the first kind. A permutation ππ in SnSn is uniquely determined by its maximal-inversion set MI(π). We prove it by making an algorithm for retrieving the permutation from its maximal-inversion set. Also, we remark on how the algorithm can be used directly to determine whether a given set is the maximal-inversion set of a permutation. As an application of the algorithm, we characterize the maximal-inversion set for pattern-avoiding permutations. Then we give some enumerative results concerning permutations with forbidden patterns.
Journal: Discrete Mathematics - Volume 309, Issue 9, 6 May 2009, Pages 2649–2657