کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4649953 1342471 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Erdős–Ginzberg–Ziv theorem with units
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The Erdős–Ginzberg–Ziv theorem with units
چکیده انگلیسی

Let x1,…,xrx1,…,xr be a sequence of elements of ZnZn, the integers modulo nn. How large must rr be to guarantee the existence of a subsequence xi1,…,xinxi1,…,xin and units α1,…,αnα1,…,αn with α1xi1+⋯+αnxin=0α1xi1+⋯+αnxin=0? Our main aim in this paper is to show that r=n+ar=n+a is large enough, where aa is the sum of the exponents of primes in the prime factorisation of nn. This result, which is best possible, could be viewed as a unit version of the Erdős–Ginzberg–Ziv theorem. This proves a conjecture of Adhikari, Chen, Friedlander, Konyagin and Pappalardi.We also discuss a number of related questions, and make conjectures which would greatly extend a theorem of Gao.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 308, Issue 23, 6 December 2008, Pages 5473–5484
نویسندگان
,