کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4650063 | 1342473 | 2009 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The (a,b)-forcing geodetic graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For every pair of vertices u,v in a graph, a u-v geodesic is a shortest path from u to v. For a graph G, let IG[u,v] denote the set of all vertices lying on a u-v geodesic, and for SâV(G), let IG[S] denote the union of all IG[u,v] for all u,vâS. A set SâV(G) is a geodetic set if IG[S]=V(G). The geodetic number g(G) of a graph G is the minimum cardinality of a geodetic set in G. A subset FâV(G) is called a forcing subset of G if there exists a unique minimum geodetic set containing F. A forcing subset F is critical if every proper subset of F is not a forcing subset. The cardinality of a minimum critical forcing subset in G is called the forcing geodetic number f(G) of G and the cardinality of a maximum critical forcing subset in G is called the upper forcing geodetic number f+(G) of G. If G is a graph with f(G)=0, then G has a unique minimum geodetic set; that is, f+(G)=0. In the paper, we prove that, for any nonnegative integers a, b and c with 1â¤aâ¤bâ¤câ2 or 4â¤a+2â¤bâ¤c, there exists a connected graph G with f(G)=a, f+(G)=b, and g(G)=c. This result solves a problem of Zhang [P. Zhang, The upper forcing geodetic number of a graph, Ars Combin. 62 (2002) 3-15].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 309, Issue 6, 6 April 2009, Pages 1623-1628
Journal: Discrete Mathematics - Volume 309, Issue 6, 6 April 2009, Pages 1623-1628
نویسندگان
Li-Da Tong,