کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4650138 | 1342477 | 2009 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
3-trees with few vertices of degree 3 in circuit graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A circuit graph (G,C)(G,C) is a 2-connected plane graph GG with an outer cycle CC such that from each inner vertex vv, there are three disjoint paths to CC. In this paper, we shall show that a circuit graph with nn vertices has a 3-tree (i.e., a spanning tree with maximum degree at most 3) with at most n−73 vertices of degree 3. Our estimation for the number of vertices of degree 3 is sharp. Using this result, we prove that a 3-connected graph with nn vertices on a surface FχFχ with Euler characteristic χ≥0χ≥0 has a 3-tree with at most n3+cχ vertices of degree 3, where cχcχ is a constant depending only on FχFχ.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 309, Issue 4, 6 March 2009, Pages 666–672
Journal: Discrete Mathematics - Volume 309, Issue 4, 6 March 2009, Pages 666–672
نویسندگان
Atsuhiro Nakamoto, Yoshiaki Oda, Katsuhiro Ota,