کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4650231 1342481 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extra edge connectivity and isoperimetric edge connectivity
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Extra edge connectivity and isoperimetric edge connectivity
چکیده انگلیسی

An edge set S of a connected graph G is a k  -extra edge cut, if G-SG-S is no longer connected, and each component of G-SG-S has at least k vertices. The cardinality of a minimum k  -extra edge cut, denoted by λk(G)λk(G), is the k-extra edge connectivity of G. The k  th isoperimetric edge connectivity γk(G)γk(G) is defined as γk(G)=min{ω(U):U⊂V(G),|U|⩾k,|U¯|⩾k}, where ω(U)ω(U) is the number of edges with one end in U   and the other end in U¯=V⧹U. Write βk(G)=min{ω(U):U⊂V(G),|U|=k}βk(G)=min{ω(U):U⊂V(G),|U|=k}. A graph G   with γj(G)=βj(G)(j=1,…,k) is said to be γkγk-optimal.In this paper, we first prove that λk(G)=γk(G)λk(G)=γk(G) if G   is a regular graph with girth g⩾k/2g⩾k/2. Then, we show that except for K3,3K3,3 and K4K4, a 3-regular vertex/edge transitive graph is γkγk-optimal if and only if its girth is at least k+2k+2. Finally, we prove that a connected d  -regular edge-transitive graph with d⩾6ek(G)/kd⩾6ek(G)/k is γkγk-optimal, where ek(G)ek(G) is the maximum number of edges in a subgraph of G with order k.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 308, Issue 20, 28 October 2008, Pages 4560–4569
نویسندگان
,