کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4650361 1342485 2008 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An abundance of invariant polynomials satisfying the Riemann hypothesis
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
An abundance of invariant polynomials satisfying the Riemann hypothesis
چکیده انگلیسی

In 1999, Iwan Duursma defined the zeta function for a linear code as a generating function of its Hamming weight enumerator. It can also be defined for other homogeneous polynomials not corresponding to existing codes. If the homogeneous polynomial is invariant under the MacWilliams transform, then its zeta function satisfies a functional equation and we can formulate an analogue of the Riemann hypothesis. As far as existing codes are concerned, the Riemann hypothesis is believed to be closely related to the extremal property.In this article, we show there are abundant polynomials invariant by the MacWilliams transform which satisfy the Riemann hypothesis. The proof is carried out by explicit construction of such polynomials. To prove the Riemann hypothesis for a certain class of invariant polynomials, we establish an analogue of the Eneström–Kakeya theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 308, Issue 24, 28 December 2008, Pages 6426–6440
نویسندگان
,