کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4650433 1342487 2008 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Density of constant radius normal binary covering codes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Density of constant radius normal binary covering codes
چکیده انگلیسی

A binary code with covering radius R   is a subset CC of the hypercube Qn={0,1}nQn={0,1}n such that every x∈Qnx∈Qn is within Hamming distance R   of some codeword c∈Cc∈C, where R   is as small as possible. For a fixed coordinate i∈[n]i∈[n], define Cb(i) to be the set of codewords with a b in the i  th position. Then CC is normal   if there exists an i∈[n]i∈[n] such that for any v∈Qnv∈Qn, the sum of the Hamming distances from vv to C0(i) and C1(i) is at most 2R+12R+1. We newly define what it means for an asymmetric covering code to be normal, and consider the worst-case asymptotic densities ν*(R)ν*(R) and ν+*(R) of constant radius R   symmetric and asymmetric normal covering codes, respectively. Using a probabilistic deletion method, and analysis adapted from previous work by Krivelevich, Sudakov, and Vu, we show that ν*(R)⩽e(RlogR+logR+loglogR+4) and ν+*(R)⩽e(RlogR+logR+loglogR+4)ν+*(1), giving evidence that minimum size constant radius covering codes could still be normal.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 308, Issue 19, 6 October 2008, Pages 4446–4459
نویسندگان
,