کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4650686 | 1342498 | 2008 | 8 صفحه PDF | دانلود رایگان |

We determine the number of locally strong endomorphisms of directed and undirected paths—direction here is in the sense of a bipartite graph from one partition set to the other. This is done by the investigation of congruence classes, leading to the concept of a complete folding, which is used to characterize locally strong endomorphisms of paths. A congruence belongs to a locally strong endomorphism if and only if the number l of congruence classes divides the length of the original path and the points of the path are folded completely into the l classes, starting from 0 to l and then back to 0, then again back to l and so on. It turns out that for paths locally strong endomorphisms form a monoid if and only if the length of the path is prime or equal to 4 in the undirected case and in the directed case also if the length is 8. Finally some algebraic properties of these monoids are described.
Journal: Discrete Mathematics - Volume 308, Issue 12, 28 June 2008, Pages 2525–2532