کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4650733 1342500 2008 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A few more Kirkman squares and doubly near resolvable BIBDs with block size 3
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
A few more Kirkman squares and doubly near resolvable BIBDs with block size 3
چکیده انگلیسی

A Kirkman square with index λλ, latinicity μμ, block size k  , and vv points, KSk(v;μ,λ)KSk(v;μ,λ), is a t×tt×t array (t=λ(v-1)/μ(k-1)t=λ(v-1)/μ(k-1)) defined on a vv-set V such that (1) every point of V   is contained in precisely μμ cells of each row and column, (2) each cell of the array is either empty or contains a k-subset of V  , and (3) the collection of blocks obtained from the non-empty cells of the array is a (v,k,λ)(v,k,λ)-BIBD. In a series of papers, Lamken established the existence of the following designs: KS3(v;1,2)KS3(v;1,2) with at most six possible exceptions [E.R. Lamken, The existence of doubly resolvable (v,3,2)(v,3,2)-BIBDs, J. Combin. Theory Ser. A 72 (1995) 50–76], KS3(v;2,4)KS3(v;2,4) with two possible exceptions [E.R. Lamken, The existence of KS3(v;2,4)sKS3(v;2,4)s, Discrete Math. 186 (1998) 195–216], and doubly near resolvable (v,3,2)(v,3,2)-BIBDs with at most eight possible exceptions [E.R. Lamken, The existence of doubly near resolvable (v,3,2)(v,3,2)-BIBDs, J. Combin. Designs 2 (1994) 427–440]. In this paper, we construct designs for all of the open cases and complete the spectrum for these three types of designs. In addition, Colbourn, Lamken, Ling, and Mills established the spectrum of KS3(v;1,1)KS3(v;1,1) in 2002 with 23 possible exceptions. We construct designs for 11 of the 23 open cases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 308, Issue 7, 6 April 2008, Pages 1102–1123
نویسندگان
, , ,