کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4650742 1342500 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Newman's phenomenon for generalized Thue–Morse sequences
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Newman's phenomenon for generalized Thue–Morse sequences
چکیده انگلیسی

Let tj=(-1)s(j)tj=(-1)s(j) be the Thue–Morse sequence with s(j)s(j) denoting the sum of the digits in the binary expansion of j  . A well-known result of Newman [On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719–721] says that t0+t3+t6+⋯+t3k>0t0+t3+t6+⋯+t3k>0 for all k⩾0k⩾0.In the first part of the paper we show that t1+t4+t7+⋯+t3k+1<0t1+t4+t7+⋯+t3k+1<0 and t2+t5+t8+⋯+t3k+2⩽0t2+t5+t8+⋯+t3k+2⩽0 for k⩾0k⩾0, where equality is characterized by means of an automaton. This sharpens results given by Dumont [Discrépance des progressions arithmétiques dans la suite de Morse, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983) 145–148]. In the second part we study more general settings. For a,g⩾2a,g⩾2 let ωa=exp(2πi/a)ωa=exp(2πi/a) and tj(a,g)=ωasg(j), where sg(j)sg(j) denotes the sum of digits in the g-ary digit expansion of j  . We observe trivial Newman-like phenomena whenever a|(g-1)a|(g-1). Furthermore, we show that the case a=2a=2 inherits many Newman-like phenomena for every even g⩾2g⩾2 and large classes of arithmetic progressions of indices. This, in particular, extends results by Drmota and Skałba [Rarified sums of the Thue–Morse sequence, Trans. Amer. Math. Soc. 352 (2000) 609–642] to the general g-case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 308, Issue 7, 6 April 2008, Pages 1191–1208
نویسندگان
, ,