کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4650754 1342500 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
NP-completeness of 4-incidence colorability of semi-cubic graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
NP-completeness of 4-incidence colorability of semi-cubic graphs
چکیده انگلیسی

The incidence coloring conjecture, proposed by Brualdi and Massey in 1993, states that the incidence coloring number of every graph is at most Δ+2Δ+2, where ΔΔ is the maximum degree of a graph. The conjecture was shown to be false in general by Guiduli in 1997, following the work of Algor and Alon. However, in 2005 Maydanskiy proved that the conjecture holds for any graph with Δ⩽3Δ⩽3. It is easily deduced that the incidence coloring number of a semi-cubic graph is 4 or 5. In this paper, we show that it is already NP-complete to determine if a semi-cubic graph is 4-incidence colorable, and therefore it is NP-complete to determine if a general graph is k-incidence colorable.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 308, Issue 7, 6 April 2008, Pages 1334–1340
نویسندگان
, ,