کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4650830 1342504 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extension of Arrow's theorem to symmetric sets of tournaments
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Extension of Arrow's theorem to symmetric sets of tournaments
چکیده انگلیسی

Arrow's impossibility theorem [K.J. Arrow, Social Choice and Individual Values, Wiley, New York, NY, 1951] shows that the set of acyclic tournaments is not closed to non-dictatorial Boolean aggregation. In this paper we extend the notion of aggregation to general tournaments and we show that for tournaments with four vertices or more any proper symmetric (closed to vertex permutations) subset cannot be closed to non-dictatorial monotone aggregation and to non-neutral aggregation. We also demonstrate a proper subset of tournaments that is closed to parity aggregation for an arbitrarily large number of vertices. This proves a conjecture of Kalai [Social choice without rationality, Reviewed NAJ Economics 3(4)] for the non-neutral and the non-dictatorial and monotone cases and gives a counter example for the general case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 307, Issue 16, 28 July 2007, Pages 2074–2081
نویسندگان
,