کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4650924 1342511 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An interpretation of the Dittert conjecture in terms of semi-matchings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
An interpretation of the Dittert conjecture in terms of semi-matchings
چکیده انگلیسی

Let G   be Kn,nKn,n with non-negative edge weights and let U and V be the two colour classes of vertices in G. We define a k-semimatching in G to be a set of k edges such that the edges either have distinct ends in U or distinct ends in V. Semimatchings are to be counted according to the product of the weights on the edges in the semimatching. The Dittert conjecture is a longstanding open problem involving matrix permanents. Here we show that it is equivalent to the following assertion: For a fixed total weight, the number of n-semimatchings in G is maximised by weighting all edges of G equally. We also introduce sub-Dittert functions which count k-semimatchings and are analogous to the subpermanent functions which count k-matchings. We prove some results about the extremal values of our sub-Dittert functions, and also that the Dittert conjecture cannot be disproved by means of unweighted graphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 307, Issue 21, 6 October 2007, Pages 2501–2507
نویسندگان
, ,