کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4650930 | 1342511 | 2007 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Three-manifolds with Heegaard genus at most two represented by crystallisations with at most 42 vertices
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is known that every closed compact orientable 3-manifold MM can be represented by a 4-edge-coloured 4-valent graph called a crystallisation of MM. Casali and Grasselli proved that 3-manifolds of Heegaard genus gg can be represented by crystallisations with a very simple structure which can be described by a 2(g+1)2(g+1)-tuple of non-negative integers. The sum of first g+1g+1 integers is called complexity of the admissible 2(g+1)2(g+1)-tuple. If cc is the complexity then the number of vertices of the associated graph is 2c2c. In the present paper we describe all prime 3-manifolds of Heegaard genus two described by 6-tuples of complexity at most 21.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 307, Issue 21, 6 October 2007, Pages 2569–2590
Journal: Discrete Mathematics - Volume 307, Issue 21, 6 October 2007, Pages 2569–2590
نویسندگان
Ján Karabáš, Peter Maličký, Roman Nedela,