کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4651193 1342525 2006 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotics of characters of symmetric groups, genus expansion and free probability
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Asymptotics of characters of symmetric groups, genus expansion and free probability
چکیده انگلیسی

The convolution of indicators of two conjugacy classes on the symmetric group SqSq is usually a complicated linear combination of indicators of many conjugacy classes. Similarly, a product of the moments of the Jucys–Murphy element involves many conjugacy classes with complicated coefficients. In this article, we consider a combinatorial setup which allows us to manipulate such products easily: to each conjugacy class we associate a two-dimensional surface and the asymptotic properties of the conjugacy class depend only on the genus of the resulting surface. This construction closely resembles the genus expansion from the random matrix theory. As the main application we study irreducible representations of symmetric groups SqSq for large q  . We find the asymptotic behavior of characters when the corresponding Young diagram rescaled by a factor q-1/2q-1/2 converge to a prescribed shape. The character formula (known as the Kerov polynomial) can be viewed as a power series, the terms of which correspond to two-dimensional surfaces with prescribed genus and we compute explicitly the first two terms, thus we prove a conjecture of Biane.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 306, Issue 7, 28 April 2006, Pages 624–665
نویسندگان
,