کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4651283 | 1342532 | 2006 | 14 صفحه PDF | دانلود رایگان |

In this paper we consider the degree of a typical vertex in two models of random intersection graphs introduced in [E. Godehardt, J. Jaworski, Two models of random intersection graphs for classification, in: M. Schwaiger, O. Opitz (Eds.), Exploratory Data Analysis in Empirical Research, Proceedings of the 25th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Munich, March 14–16, 2001, Springer, Berlin, Heidelberg, New York, 2002, pp. 67–81], the active and passive models. The active models are those for which vertices are assigned a random subset of a list of objects and two vertices are made adjacent when their subsets intersect. We prove sufficient conditions for vertex degree to be asymptotically Poisson as well as closely related necessary conditions. We also consider the passive model of intersection graphs, in which objects are vertices and two objects are made adjacent if there is at least one vertex in the corresponding active model “containing” both objects. We prove a necessary condition for vertex degree to be asymptotically Poisson for passive intersection graphs.
Journal: Discrete Mathematics - Volume 306, Issue 18, 28 September 2006, Pages 2152–2165