کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4651647 | 1632581 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On containment graphs of paths in a tree
ترجمه فارسی عنوان
در نمودارهای مهارتی مسیرها در یک درخت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
چکیده انگلیسی
The aim of the present work is the study of those posets that admit a containment model mapping vertices into paths of a tree, and their comparability graphs named CPT graphs. Answering a question posed by J.Spinrad, we prove that the dimension of CPT graphs is unbounded. We show that every tree is CPT. When ever transitive orientation of the edges of a comparability graph G defines a CPT poset, we say that G is strong-CPT. When both some transitive orientation of G and its reverse are CPT, we say that G is dually-CPT. Split comparability graphs that are dually-CPT or strong-CPT are characterized by forbidden induced subgraphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 50, December 2015, Pages 175-180
Journal: Electronic Notes in Discrete Mathematics - Volume 50, December 2015, Pages 175-180