کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4651654 1632581 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal Edge Fault-Tolerant Bijective Embedding of a Complete Graph over a Cycle
ترجمه فارسی عنوان
بدست آوردن الگوریتم کامل الگوریتم یک الگوریتم کامل در یک چرخه
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی

An embedding of a guest graph G over a host graph H is an injective map Φ from the vertices of G to the vertices of H and a routing map ρ, which associates every edge e=xy in G to a Φ(x)-Φ(y) path ρ(e) in H. Given an edge f in H the number of edges e in G such that f belongs to ρ(e) is the (edge) congestion cong(f) of f. The length of ρ(e) is called the dilatation dil(e) of e. The sum of all th dilatations is the cost of the embedding. The removal of an edge f of H gives rise to a surviving graph Gf, consisting of the guest graph without those edges that cross f, i.e., Gf=G−{e:f∈ρ(e)}. Given n and b, we are facing the problem of finding a minimum cost embedding Φ of a graph G with n vertices over the cycle Cn, such that for any surviving graph Gf, there is an embedding of the complete graph Kn over Gf whose congestions are not greater than b. This work presents a lower bound for the optimal cost of such problem and a family of embeddings that match this bound over a broad range of combinations of n and b.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Discrete Mathematics - Volume 50, December 2015, Pages 217-222