کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4653297 | 1632763 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the commutative quotient of Fomin–Kirillov algebras
ترجمه فارسی عنوان
درباره خارج قسمت مبادلهای جبرهای Fomin ـ Kirillov
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
چکیده انگلیسی
The Fomin–Kirillov algebra EnEn is a noncommutative algebra with a generator for each edge of the complete graph on nn vertices. For any graph GG on nn vertices, let EGEG be the subalgebra of EnEn generated by the edges in GG. We show that the commutative quotient of EGEG is isomorphic to the Orlik–Terao algebra of GG. As a consequence, the Hilbert series of this quotient is given by (−t)nχG(−t−1)(−t)nχG(−t−1), where χGχG is the chromatic polynomial of GG. We also give a reduction algorithm for the graded components of EGEG that do not vanish in the commutative quotient and show that their structure is described by the combinatorics of noncrossing forests.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 54, May 2016, Pages 65–75
Journal: European Journal of Combinatorics - Volume 54, May 2016, Pages 65–75
نویسندگان
Ricky Ini Liu,