کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655091 1632929 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hedetniemi's conjecture for Kneser hypergraphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Hedetniemi's conjecture for Kneser hypergraphs
چکیده انگلیسی
One of the most famous conjectures in graph theory is Hedetniemi's conjecture stating that the chromatic number of the categorical product of graphs is the minimum of their chromatic numbers. Using a suitable extension of the definition of the categorical product, Zhu proposed in 1992 a similar conjecture for hypergraphs. We prove that Zhu's conjecture is true for the usual Kneser hypergraphs of same rank. It provides to the best of our knowledge the first non-trivial and explicit family of hypergraphs with rank larger than two satisfying this conjecture (the rank two case being Hedetniemi's conjecture). We actually prove a more general result providing a lower bound on the chromatic number of the categorical product of any Kneser hypergraphs as soon as they all have same rank. We derive from it new families of graphs satisfying Hedetniemi's conjecture. The proof of the lower bound relies on the Zp-Tucker lemma.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 143, October 2016, Pages 42-55
نویسندگان
, ,