کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655236 | 1632942 | 2015 | 16 صفحه PDF | دانلود رایگان |
We generalize a theorem of M. Hall Jr., that an r×nr×n Latin rectangle on n symbols can be extended to an n×nn×n Latin square on the same n symbols. Let p, n , ν1,ν2,…,νnν1,ν2,…,νn be positive integers such that 1≤νi≤p1≤νi≤p(1≤i≤n)(1≤i≤n) and ∑i=1nνi=p2. Call an r×pr×p matrix on n symbols σ1,σ2,…,σnσ1,σ2,…,σn an r×pr×p(ν1,ν2,…,νn)(ν1,ν2,…,νn)-latinized rectangle if no symbol occurs more than once in any row or column, and if the symbol σiσi occurs at most νiνi times altogether (1≤i≤n)(1≤i≤n). We give a necessary and sufficient condition for an r×pr×p(ν1,ν2,…,νn)(ν1,ν2,…,νn)-latinized rectangle to be extendible to a p×pp×p(ν1,ν2,…,νn)(ν1,ν2,…,νn)-latinized square. The condition is a generalization of P. Hall's condition for the existence of a system of distinct representatives, and will be called Hall's (ν1,ν2,…,νn)(ν1,ν2,…,νn)-Constrained Condition. We then use our main result to give two further sets of necessary and sufficient conditions. Finally we use our results to show that, given p, n , ν1,ν2,…,νnν1,ν2,…,νn such that 1≤νi≤p1≤νi≤p, ∑i=1nνi=p2, then a p×pp×p(ν1,ν2,…,νn)(ν1,ν2,…,νn)-latinized square exists.
Journal: Journal of Combinatorial Theory, Series A - Volume 130, February 2015, Pages 26–41