کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655261 1632944 2014 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Manickam–Miklós–Singhi conjectures for sets and vector spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The Manickam–Miklós–Singhi conjectures for sets and vector spaces
چکیده انگلیسی

More than twenty-five years ago, Manickam, Miklós, and Singhi conjectured that for positive integers n,kn,k with n≥4kn≥4k, every set of n   real numbers with nonnegative sum has at least (n−1k−1)k  -element subsets whose sum is also nonnegative. We verify this conjecture when n≥8k2n≥8k2, which simultaneously improves and simplifies a bound of Alon, Huang, and Sudakov and also a bound of Pokrovskiy when k<1045k<1045.Moreover, our arguments resolve the vector space analogue of this conjecture. Let V be an n-dimensional vector space over a finite field. Assign a real-valued weight to each 1-dimensional subspace in V   so that the sum of all weights is zero. Define the weight of a subspace S⊂VS⊂V to be the sum of the weights of all the 1-dimensional subspaces it contains. We prove that if n≥3kn≥3k, then the number of k-dimensional subspaces in V with nonnegative weight is at least the number of k-dimensional subspaces in V that contain a fixed 1-dimensional subspace. This result verifies a conjecture of Manickam and Singhi from 1988.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 128, November 2014, Pages 84–103
نویسندگان
, , ,