کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655287 1632945 2014 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Permutation patterns, Stanley symmetric functions, and generalized Specht modules
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Permutation patterns, Stanley symmetric functions, and generalized Specht modules
چکیده انگلیسی

Generalizing the notion of a vexillary permutation, we introduce a filtration of S∞S∞ by the number of terms in the Stanley symmetric function, with the kth filtration level called the k-vexillary permutations. We show that for each k, the k-vexillary permutations are characterized by avoiding a finite set of patterns. A key step is the construction of a Specht series, in the sense of James and Peel, for the Specht module associated with the diagram of a permutation. As a corollary, we prove a conjecture of Liu on diagram varieties for certain classes of permutation diagrams. We apply similar techniques to characterize multiplicity-free Stanley symmetric functions, as well as permutations whose diagram is equivalent to a forest in the sense of Liu.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 127, September 2014, Pages 85–120
نویسندگان
, ,