کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655405 | 1632951 | 2013 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On a generalization of Abelian equivalence and complexity of infinite words
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we introduce and study a family of complexity functions of infinite words indexed by kâZ+âª{+â}. Let kâZ+âª{+â} and A be a finite non-empty set. Two finite words u and v in Aâ are said to be k-Abelian equivalent if for all xâAâ of length less than or equal to k, the number of occurrences of x in u is equal to the number of occurrences of x in v. This defines a family of equivalence relations â¼k on Aâ, bridging the gap between the usual notion of Abelian equivalence (when k=1) and equality (when k=+â). We show that the number of k-Abelian equivalence classes of words of length n grows polynomially, although the degree is exponential in k. Given an infinite word ÏâAN, we consider the associated complexity function PÏ(k):NâN which counts the number of k-Abelian equivalence classes of factors of Ï of length n. We show that the complexity function P(k) is intimately linked with periodicity. More precisely we define an auxiliary function qk:NâN and show that if PÏ(k)(n)
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 120, Issue 8, November 2013, Pages 2189-2206
Journal: Journal of Combinatorial Theory, Series A - Volume 120, Issue 8, November 2013, Pages 2189-2206
نویسندگان
Juhani Karhumaki, Aleksi Saarela, Luca Q. Zamboni,