کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655431 1343384 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Average mixing of continuous quantum walks
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Average mixing of continuous quantum walks
چکیده انگلیسی

If X is a graph with adjacency matrix A  , then we define H(t)H(t) to be the operator exp(itA)exp(itA). The Schur (or entrywise) product H(t)∘H(−t)H(t)∘H(−t) is a doubly stochastic matrix and because of work related to quantum computing, we are concerned with the average mixing matrix  MˆX, defined byMˆX=limT→∞1T∫0TH(t)∘H(−t)dt. In this paper we establish some of the basic properties of this matrix, showing that it is positive semidefinite and that its entries are always rational. We see that in a number of cases its form is surprisingly simple. Thus for the path on n vertices it is equal to12n+2(2J+I+T) where T is the permutation matrix that swaps j   and n+1−jn+1−j for each j. If X is an odd cycle or, more generally, if X is one of the graphs in a pseudocyclic association scheme on n vertices with d classes, each of valency m, then its average mixing matrix isn−m+1n2J+m−1nI. (One reason this is interesting is that a graph in a pseudocyclic scheme may have trivial automorphism group, and then the mixing matrix is more symmetric than the graph itself.)

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 120, Issue 7, September 2013, Pages 1649–1662
نویسندگان
,