کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655433 1343384 2013 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constructive degree bounds for group-based models
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Constructive degree bounds for group-based models
چکیده انگلیسی

Group-based models arise in algebraic statistics while studying evolution processes. They are represented by embedded toric algebraic varieties. Both from the theoretical and applied point of view one is interested in determining the ideals defining the varieties. Conjectural bounds on the degree in which these ideals are generated were given by Sturmfels and Sullivant (2005) [25, Conjectures 29, 30]. We prove that for the 3-Kimura model, corresponding to the group G=Z2×Z2G=Z2×Z2, the projective scheme can be defined by an ideal generated in degree 4. In particular, it is enough to consider degree 4 phylogenetic invariants to test if a given point belongs to the variety. We also investigate G-models, a generalization of abelian group-based models. For any G-model, we prove that there exists a constant d, such that for any tree, the associated projective scheme can be defined by an ideal generated in degree at most d.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 120, Issue 7, September 2013, Pages 1672–1694
نویسندگان
,