کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655535 1343389 2013 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Veronesean embeddings of dual polar spaces of orthogonal type
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Veronesean embeddings of dual polar spaces of orthogonal type
چکیده انگلیسی

Given a point-line geometry Γ and a pappian projective space S, a veronesean embedding of Γ in S is an injective map e from the point-set of Γ to the set of points of S mapping the lines of Γ onto non-singular conics of S and such that e(Γ) spans S. In this paper we study veronesean embeddings of the dual polar space Δn associated to a non-singular quadratic form q of Witt index n⩾2 in V=V(2n+1,F). Three such embeddings are considered, namely the Grassmann embedding which maps a maximal singular subspace 〈v1,…,vn〉 of V (namely a point of Δn) to the point of PG(⋀nV), the composition of the spin (projective) embedding of Δn in PG(2n−1,F) with the quadric veronesean map , and a third embedding defined algebraically in the Weyl module V(2λn), where λn is the fundamental dominant weight associated to the n-th simple root of the root system of type Bn. We shall prove that and are isomorphic. If char(F)≠2 then V(2λn) is irreducible and is isomorphic to while if char(F)=2 then is a proper quotient of . In this paper we shall study some of these submodules. Finally we turn to universality, focusing on the case of n=2. We prove that if F is a finite field of odd order q>3 then is relatively universal. On the contrary, if char(F)=2 then is not universal. We also prove that if F is a perfect field of characteristic 2 then is not universal, for any n⩾2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 120, Issue 6, August 2013, Pages 1328-1350