کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655542 | 1343390 | 2013 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the structure of cube tilings of R3 and R4
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A family of translates of the unit cube , T⊂Rd, is called a cube tiling of Rd if cubes from this family are pairwise disjoint and ⋃t∈T[0,1)d+t=Rd. A non-empty set B=B1×⋯×Bd⊆Rd is a block if there is a family of pairwise disjoint unit cubes [0,1)d+S, S⊂Rd, such that B=⋃t∈S[0,1)d+t and for every t,t′∈S there is i∈{1,…,d} such that . A cube tiling of Rd is blockable if there is a finite family of disjoint blocks B, |B|>1, with the property that every cube from the tiling is contained in exactly one block of the family B. We construct a cube tiling T of R4 which, in contrast to cube tilings of R3, is not blockable. We give a new proof of the theorem saying that every cube tiling of R3 is blockable.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 120, Issue 1, January 2013, Pages 1-10
Journal: Journal of Combinatorial Theory, Series A - Volume 120, Issue 1, January 2013, Pages 1-10