کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655570 | 1343391 | 2012 | 18 صفحه PDF | دانلود رایگان |

Plane polyominoes are edge-connected sets of cells on the orthogonal lattice Z2, considered identical if their cell sets are equal up to an integral translation. We introduce a novel injection from the set of polyominoes with n cells to the set of permutations of [n], and classify the families of convex polyominoes and tree-like convex polyominoes as classes of permutations that avoid some sets of forbidden patterns. By analyzing the structure of the respective permutations of the family of tree-like convex polyominoes, we are able to find the generating function of the sequence that enumerates this family, conclude that this sequence satisfies the linear recurrence an=6an−1−14an−2+16an−3−9an−4+2an−5, and compute the closed-form formula an=2n+2−(n3−n2+10n+4)/2.
Journal: Journal of Combinatorial Theory, Series A - Volume 119, Issue 3, April 2012, Pages 503-520