کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655574 1343391 2012 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear relations of refined enumerations of alternating sign matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Linear relations of refined enumerations of alternating sign matrices
چکیده انگلیسی

In recent papers we have studied refined enumerations of alternating sign matrices with respect to a fixed set of top and bottom rows. The present paper is a first step towards extending these considerations to alternating sign matrices where in addition some left and right columns are fixed. The main result is a simple linear relation between the number of n×n alternating sign matrices where the top row as well as the left and the right column is fixed and the number of n×n alternating sign matrices where the two top rows and the bottom row are fixed. This may be seen as a first indication for the fact that the refined enumerations of alternating sign matrices with respect to a fixed set of top and bottom rows as well as left and right columns can possibly be reduced to the refined enumerations where only some top and bottom rows are fixed. For the latter numbers we provide a system of linear equations that conjecturally determines them uniquely.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 119, Issue 3, April 2012, Pages 556-578