کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655576 | 1343391 | 2012 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Counting general and self-dual interval orders
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we present a new method to derive formulas for the generating functions of interval orders, counted with respect to their size, magnitude, and number of minimal and maximal elements. Our method allows us not only to generalize previous results on refined enumeration of general interval orders, but also to enumerate self-dual interval orders with respect to analogous statistics.Using the newly derived generating function formulas, we are able to prove a bijective relationship between self-dual interval orders and upper-triangular matrices with no zero rows. Previously, a similar bijective relationship has been established between general interval orders and upper-triangular matrices with no zero rows and columns.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 119, Issue 3, April 2012, Pages 599-614
Journal: Journal of Combinatorial Theory, Series A - Volume 119, Issue 3, April 2012, Pages 599-614