کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655582 1343391 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Looping of the numbers game and the alcoved hypercube
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Looping of the numbers game and the alcoved hypercube
چکیده انگلیسی

We study the so-called looping case of Mozesʼs game of numbers, which concerns the (finite) orbits in the reflection representation of affine Weyl groups situated on the boundary of the Tits cone. We give a simple proof that all configurations in the orbit are obtainable from each other by playing the numbers game, and give a strategy for going from one configuration to another. This strategy gives rise to a partition of the finite Weyl group into finitely many graded posets, one for each extending vertex of the associated extended Dynkin diagram. These posets are self-dual and mutually isomorphic, and their Hasse diagrams are dual to the triangulation of the unit hypercube by reflecting hyperplanes. Unlike the weak and Bruhat orders, the top degree is cubic in the number of vertices of the graph. We explicitly compute the rank generating function of the poset.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 119, Issue 3, April 2012, Pages 713-730