کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655664 1343397 2012 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences
چکیده انگلیسی

For a sequence s=(s1,…,sn) of positive integers, an s-lecture hall partition is an integer sequence λ satisfying 0⩽λ1/s1⩽λ2/s2⩽⋯⩽λn/sn. In this work, we introduce s-lecture hall polytopes, s-inversion sequences, and relevant statistics on both families. We show that for any sequence s of positive integers: (i) the h⁎-vector of the s-lecture hall polytope is the ascent polynomial for the associated s-inversion sequences; (ii) the ascent polynomials for s-inversion sequences generalize the Eulerian polynomials, including a q-analog that tracks a generalization of major index on s-inversion sequences; and (iii) the generating function for the s-lecture hall partitions can be interpreted in terms of a new q-analog of the s-Eulerian polynomials, which tracks a “lecture hall” statistic on s-inversion sequences. We show how four different statistics are related through the three s-families of partitions, polytopes, and inversion sequences. Our approach uses Ehrhart theory to relate the partition theory of lecture hall partitions to their geometry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 119, Issue 4, May 2012, Pages 850-870