کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655680 1343398 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Interval partitions and Stanley depth
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Interval partitions and Stanley depth
چکیده انگلیسی

In this paper, we answer a question posed by Herzog, Vladoiu, and Zheng. Their motivation involves a 1982 conjecture of Richard Stanley concerning what is now called the Stanley depth of a module. The question of Herzog et al., concerns partitions of the non-empty subsets of {1,2,…,n} into intervals. Specifically, given a positive integer n, they asked whether there exists a partition P(n) of the non-empty subsets of {1,2,…,n} into intervals, so that |B|⩾n/2 for each interval [A,B] in P(n). We answer this question in the affirmative by first embedding it in a stronger result. We then provide two alternative proofs of this second result. The two proofs use entirely different methods and yield non-isomorphic partitions. As a consequence, we establish that the Stanley depth of the ideal (x1,…,xn)⊆K[x1,…,xn] (K a field) is ⌈n/2⌉.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 117, Issue 4, May 2010, Pages 475-482