کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655694 | 1343399 | 2011 | 23 صفحه PDF | دانلود رایگان |

The secondary polytope of a point configuration A is a polytope whose face poset is isomorphic to the poset of all regular subdivisions of A. While the vertices of the secondary polytope – corresponding to the triangulations of A – are very well studied, there is not much known about the facets of the secondary polytope.The splits of a polytope, subdivisions with exactly two maximal faces, are the simplest examples of such facets and the first that were systematically investigated. The present paper can be seen as a continuation of these studies and as a starting point of an examination of the subdivisions corresponding to the facets of the secondary polytope in general. As a special case, the notion of k-split is introduced as a possibility to classify polytopes in accordance to the complexity of the facets of their secondary polytopes. An application to matroid subdivisions of hypersimplices and tropical geometry is given.
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 2, February 2011, Pages 425-447