کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655700 1343399 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strictly monotonic multidimensional sequences and stable sets in pillage games
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Strictly monotonic multidimensional sequences and stable sets in pillage games
چکیده انگلیسی

Let S⊂Rn have size |S|>ℓn2−1. We show that there are distinct points {x1,…,xℓ+1}⊂S such that for each i∈[n], the coordinate sequence is strictly increasing, strictly decreasing, or constant, and that this bound on |S| is best possible. This is analogous to the Erdős–Szekeres theorem on monotonic sequences in R.We apply these results to bound the size of a stable set in a pillage game.We also prove a theorem of independent combinatorial interest. Suppose {a1,b1,…,at,bt} is a set of 2t points in Rn such that the set of pairs of points not sharing a coordinate is precisely {{a1,b1},…,{at,bt}}. We show that t⩽2n−1, and that this bound is best possible.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 2, February 2011, Pages 510-524