کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655722 | 1343401 | 2011 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spheres arising from multicomplexes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In 1992, Thomas Bier introduced a surprisingly simple way to construct a large number of simplicial spheres. He proved that, for any simplicial complex Δ on the vertex set V with Δ≠V2, the deleted join of Δ with its Alexander dual Δ∨ is a combinatorial sphere. In this paper, we extend Bierʼs construction to multicomplexes, and study their combinatorial and algebraic properties. We show that all these spheres are shellable and edge decomposable, which yields a new class of many shellable edge decomposable spheres that are not realizable as polytopes. It is also shown that these spheres are related to polarizations and Alexander duality for monomial ideals which appear in commutative algebra theory.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 8, November 2011, Pages 2167-2184
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 8, November 2011, Pages 2167-2184