کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655729 1343401 2011 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The equivariant topology of stable Kneser graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The equivariant topology of stable Kneser graphs
چکیده انگلیسی

The stable Kneser graph SGn,k, n⩾1, k⩾0, introduced by Schrijver (1978) [19], , is a vertex critical graph with chromatic number k+2, its vertices are certain subsets of a set of cardinality m=2n+k. Björner and de Longueville (2003) [5] have shown that its box complex is homotopy equivalent to a sphere, Hom(K2,SGn,k)≃Sk. The dihedral group D2m acts canonically on SGn,k, the group C2 with 2 elements acts on K2. We almost determine the (C2×D2m)-homotopy type of Hom(K2,SGn,k) and use this to prove the following results.The graphs SG2s,4 are homotopy test graphs, i.e. for every graph H and r⩾0 such that Hom(SG2s,4,H) is (r−1)-connected, the chromatic number χ(H) is at least r+6.If k∉{0,1,2,4,8} and n⩾N(k) then SGn,k is not a homotopy test graph, i.e. there are a graph G and an r⩾1 such that Hom(SGn,k,G) is (r−1)-connected and χ(G)

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 8, November 2011, Pages 2291-2318