کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655801 1343404 2011 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A universal sequence of integers generating balanced Steinhaus figures modulo an odd number
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
A universal sequence of integers generating balanced Steinhaus figures modulo an odd number
چکیده انگلیسی

In this paper, we partially solve an open problem, due to J.C. Molluzzo in 1976, on the existence of balanced Steinhaus triangles modulo a positive integer n, that are Steinhaus triangles containing all the elements of Z/nZ with the same multiplicity. For every odd number n, we build an orbit in Z/nZ, by the linear cellular automaton generating the Pascal triangle modulo n, which contains infinitely many balanced Steinhaus triangles. This orbit, in Z/nZ, is obtained from an integer sequence called the universal sequence. We show that there exist balanced Steinhaus triangles for at least 2/3 of the admissible sizes, in the case where n is an odd prime power. Other balanced Steinhaus figures, such as Steinhaus trapezoids, generalized Pascal triangles, Pascal trapezoids or lozenges, also appear in the orbit of the universal sequence modulo n odd. We prove the existence of balanced generalized Pascal triangles for at least 2/3 of the admissible sizes, in the case where n is an odd prime power, and the existence of balanced lozenges for all admissible sizes, in the case where n is a square-free odd number.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 1, January 2011, Pages 291-315