کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655825 1343405 2011 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximal admissible faces and asymptotic bounds for the normal surface solution space
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Maximal admissible faces and asymptotic bounds for the normal surface solution space
چکیده انگلیسی

The enumeration of normal surfaces is a key bottleneck in computational three-dimensional topology. The underlying procedure is the enumeration of admissible vertices of a high-dimensional polytope, where admissibility is a powerful but non-linear and non-convex constraint. The main results of this paper are significant improvements upon the best known asymptotic bounds on the number of admissible vertices, using polytopes in both the standard normal surface coordinate system and the streamlined quadrilateral coordinate system.To achieve these results we examine the layout of admissible points within these polytopes. We show that these points correspond to well-behaved substructures of the face lattice, and we study properties of the corresponding “admissible faces”. Key lemmata include upper bounds on the number of maximal admissible faces of each dimension, and a bijection between the maximal admissible faces in the two coordinate systems mentioned above.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 118, Issue 4, May 2011, Pages 1410-1435