کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655841 1343406 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extremal functions of forbidden double permutation matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Extremal functions of forbidden double permutation matrices
چکیده انگلیسی

We say a 0–1 matrix A avoids a matrix P if no submatrix of A can be transformed into P by changing some ones to zeroes. We call P an m-tuple permutation matrix if P can be obtained by replacing each column of a permutation matrix with m copies of that column. In this paper, we investigate n×n matrices that avoid P and the maximum number ex(n,P) of ones that they can have. We prove a linear bound on ex(n,P) for any 2-tuple permutation matrix P, resolving a conjecture of Keszegh [B. Keszegh, On linear forbidden matrices, J. Combin. Theory Ser. A 116 (1) (2009) 232–241]. Using this result, we obtain a linear bound on ex(n,P) for any m-tuple permutation matrix P. Additionally, we demonstrate the existence of infinitely many minimal non-linear patterns, resolving another conjecture of Keszegh from the same paper.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 7, October 2009, Pages 1235-1244