کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655841 | 1343406 | 2009 | 10 صفحه PDF | دانلود رایگان |

We say a 0–1 matrix A avoids a matrix P if no submatrix of A can be transformed into P by changing some ones to zeroes. We call P an m-tuple permutation matrix if P can be obtained by replacing each column of a permutation matrix with m copies of that column. In this paper, we investigate n×n matrices that avoid P and the maximum number ex(n,P) of ones that they can have. We prove a linear bound on ex(n,P) for any 2-tuple permutation matrix P, resolving a conjecture of Keszegh [B. Keszegh, On linear forbidden matrices, J. Combin. Theory Ser. A 116 (1) (2009) 232–241]. Using this result, we obtain a linear bound on ex(n,P) for any m-tuple permutation matrix P. Additionally, we demonstrate the existence of infinitely many minimal non-linear patterns, resolving another conjecture of Keszegh from the same paper.
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 7, October 2009, Pages 1235-1244