کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655877 1343408 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Chains of modular elements and shellability
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Chains of modular elements and shellability
چکیده انگلیسی

Let L be a lattice admitting a left-modular chain of length r, not necessarily maximal. We show that if either L is graded or the chain is modular, then the (r−2)-skeleton of L is vertex-decomposable (hence shellable). This proves a conjecture of Hersh. Under certain circumstances, we can find shellings of higher skeleta. For instance, if the left-modular chain consists of every other element of some maximum length chain, then L itself is shellable. We apply these results to give a new characterization of finite solvable groups in terms of the topology of subgroup lattices.Our main tool relaxes the conditions for an EL-labeling, allowing multiple ascending chains as long as they are lexicographically before non-ascending chains. We extend results from the theory of EL-shellable posets to such labelings. The shellability of certain skeleta is one such result. Another is that a poset with such a labeling is homotopy equivalent (by discrete Morse theory) to a cell complex with cells in correspondence to weakly descending chains.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 119, Issue 6, August 2012, Pages 1315-1327