کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655889 1343409 2010 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Growth diagrams for the Schubert multiplication
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Growth diagrams for the Schubert multiplication
چکیده انگلیسی

We present a partial generalization of the classical Littlewood–Richardson rule (in its version based on Schützenberger's jeu de taquin) to Schubert calculus on flag varieties. More precisely, we describe certain structure constants expressing the product of a Schubert and a Schur polynomial. We use a generalization of Fomin's growth diagrams (for chains in Young's lattice of partitions) to chains of permutations in the so-called k-Bruhat order. Our work is based on the recent thesis of Beligan, in which he generalizes the classical plactic structure on words to chains in certain intervals in k-Bruhat order. Potential applications of our work include the generalization of the S3-symmetric Littlewood–Richardson rule due to Thomas and Yong, which is based on Fomin's growth diagrams.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 117, Issue 7, October 2010, Pages 842-856