کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655939 1343411 2009 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The number of lattice paths below a cyclically shifting boundary
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The number of lattice paths below a cyclically shifting boundary
چکیده انگلیسی

We count the number of lattice paths lying under a cyclically shifting piecewise linear boundary of varying slope. Our main result can be viewed as an extension of well-known enumerative formulae concerning lattice paths dominated by lines of integer slope (e.g. the generalized ballot theorem). Its proof is bijective, involving a classical “reflection” argument. Moreover, a straightforward refinement of our bijection allows for the counting of paths with a specified number of corners. We also show how the result can be applied to give elegant derivations for the number of lattice walks under certain periodic boundaries. In particular, we recover known expressions concerning paths dominated by a line of half-integer slope, and some new and old formulae for paths lying under special “staircases.”

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 3, April 2009, Pages 499-514