کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655942 | 1343411 | 2009 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
From Bruhat intervals to intersection lattices and a conjecture of Postnikov
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We prove the conjecture of A. Postnikov that (A) the number of regions in the inversion hyperplane arrangement associated with a permutation w∈Sn is at most the number of elements below w in the Bruhat order, and (B) that equality holds if and only if w avoids the patterns 4231, 35142, 42513 and 351624. Furthermore, assertion (A) is extended to all finite reflection groups.A byproduct of this result and its proof is a set of inequalities relating Betti numbers of complexified inversion arrangements to Betti numbers of closed Schubert cells. Another consequence is a simple combinatorial interpretation of the chromatic polynomial of the inversion graph of a permutation which avoids the above patterns.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 3, April 2009, Pages 564-580
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 3, April 2009, Pages 564-580