کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4655944 1343411 2009 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The homology of the cyclic coloring complex of simple graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
The homology of the cyclic coloring complex of simple graphs
چکیده انگلیسی

Let G be a simple graph on n vertices, and let χG(λ) denote the chromatic polynomial of G. In this paper, we define the cyclic coloring complex, Δ(G), and determine the dimensions of its homology groups for simple graphs. In particular, we show that if G has r connected components, the dimension of (n−3)rd homology group of Δ(G) is equal to (n−(r+1)) plus , where is the rth derivative of χG(λ). We also define a complex ΔC(G), whose r-faces consist of all ordered set partitions [B1,…,Br+2] where none of the Bi contain an edge of G and where 1∈B1. We compute the dimensions of the homology groups of this complex, and as a result, obtain the dimensions of the multilinear parts of the cyclic homology groups of C[x1,…,xn]/{xixj|ijis an edge ofG}. We show that when G is a connected graph, the homology of ΔC(G) has nonzero homology only in dimension n−2, and the dimension of this homology group is . In this case, we provide a bijection between a set of homology representatives of ΔC(G) and the acyclic orientations of G with a unique source at v, a vertex of G.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 3, April 2009, Pages 595-612