کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4655947 | 1343411 | 2009 | 13 صفحه PDF | دانلود رایگان |

As the extension of the previous work by Ciucu and the present authors [M. Ciucu, W.G. Yan, F.J. Zhang, The number of spanning trees of plane graphs with reflective symmetry, J. Combin. Theory Ser. A 112 (2005) 105–116], this paper considers the problem of enumeration of spanning trees of weighted graphs with an involution which allows fixed points. We show that if G is a weighted graph with an involution, then the sum of weights of spanning trees of G can be expressed in terms of the product of the sums of weights of spanning trees of two weighted graphs with a smaller size determined by the involution of G. As applications, we enumerate spanning trees of the almost-complete bipartite graph, the almost-complete graph, the Möbius ladder, and the almost-join of two copies of a graph.
Journal: Journal of Combinatorial Theory, Series A - Volume 116, Issue 3, April 2009, Pages 650-662